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SUMMARY

A simple and efficient method to solve the one-dimensional shallow water equations with source terms
is presented. To avoid a fractional step method for the discretization of the source terms, a homogeneous
form of the shallow water equations is proposed and well-known conservative numerical schemes are
modified to solve the new form of the equations. The modification to the homogeneous form equations
combines the source terms with the flux term and solves them by the same solution structure of the
numerical scheme. As a result, the source terms are automatically discretized to achieve perfect balance
with flux terms without any special treatment and the method does not introduce numerical errors. The
proposed method is verified against several benchmark tests and shows good agreement with analytical
solutions. Copyright q 2009 John Wiley & Sons, Ltd.

Received 4 April 2008; Revised 6 March 2009; Accepted 10 March 2009

KEY WORDS: shallow water equations; source terms; Roe’s solver; HLL solver; Lax–Wendroff scheme;
MacCormack scheme; Godunov

1. INTRODUCTION

Finite volume schemes have been widely used for modelling of shallow water flows because of their
conservative properties. Especially, Godunov-type schemes based on approximate Riemann solvers
[1, 2], which have been developed in the field of aeronautics have been able to deal with transcritical
and highly unsteady flows. However, the inclusion of the source terms causes difficulties in finding
solutions because it makes the governing equations an inhomogeneous system. In particular, the
source terms relevant to the channel geometry cause numerical errors in steady flow problems,
when an exact balance of the flux gradient and the source terms is not achieved.
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The treatment of geometric source terms has been studied by many researchers. Nujic [3]
noted the difficulties in treating variable bottom geometry and suggested that the 0.5gh2 term in
the flux function should be removed and combined with the source terms. LeVeque [4] inserted
an additional discontinuity at the centre of each cell to incorporate source terms into the wave
propagation algorithm and avoid the need for fractional steps. LeVeque’s method is complicated to
implement and shows less robustness when used for steady transcritical flows containing shocks.
The upwind approach for source term discretization has been widely used since Bermudez and
Vazquez [5] showed that the upwind treatment of source terms produces better results than the
pointwise method in a rectangular channel with bed slope variation. Then, Garcia-Navarro and
Vazquez-Cendon [6], Hubbard and Garcia-Navarro [7] extended the upwind approach to non-
prismatic channels and high-resolution schemes. Burguete and Garcia-Navarro [8, 9] proposed a
decomposition technique for the I2 term and applied the upwind method to arbitrary channel
geometry. The upwinding of source terms shows very robust and accurate solutions. However,
this method is complex because the source terms must be calculated separately according to
the characteristic properties and it is necessary to correct the formulation when using a higher-
order scheme. Meanwhile, Zhou et al. [10] suggested the surface gradient method for linear
reconstruction of data in MUSCL-type schemes and Capart et al. [11] reconstructed the geometric
source terms by considering the balance of hydrostatic pressure with the approximated water surface
level.

In this paper, a different technique for solving the source term problem is presented. The
shallow water equations including the source terms are modified to an homogeneous form and
solved using well-known numerical schemes. Gascon and Coberan [12] developed an analogous
scheme for a nozzle flow problem. They proposed a new flux formed by adding the primitive
of the source terms to the flux terms, which was used to modify the governing equations for
a compressible gas. An alternative method is developed here for the shallow water equations.
This differs from Gascon and Coberan [12] in that the modification is performed by changing
the source terms into a differential form similar to the flux term, which leads to a simpler and
more efficient form of numerical scheme. Moreover, to secure exact numerical balance, new
expressions for the source flux terms and corresponding channel geometry are presented. Conse-
quently, the source terms are treated as a flux term and combined with the original numerical flux
to form an integrated numerical flux representing real flow conditions. The integrated intercell
numerical flux function including source term effects is obtained by modifying the well-known
conservative numerical schemes. In Section 2, the original form of the shallow water equa-
tions is presented, while this is modified into an homogeneous form in Section 3. Section 4
presents several conservative schemes to solve the homogeneous form equations. In Section 5,
the modified forms of these schemes are applied to benchmark tests to verify their accuracy and
ability.

2. THE ONE-DIMENSIONAL SHALLOW WATER EQUATIONS

The one-dimensional shallow water equations that describe the flow in an open channel can be
written in the following vector form as:

�U
�t

+ �F
�x

=S (1)
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with

U=
(
A

Q

)
, F=

(
Q

Q2/A+gI1

)
and S=

(
0

gA(So−S f )+gI2

)

where A is the wetted cross-sectional area, Q is the discharge, So is the bed slope and S f is the
friction slope. The hydrostatic pressure terms I1 and I2 are defined as

I1=
∫ h

0
(h−�)�d� and I2=

∫ h

0
(h−�)

��

�x
d�

where h is the water depth and �=�(x,�) is the channel width at distance � above the channel
bottom.

The shallow water equations (1) form an inhomogeneous hyperbolic equation system due to the
existence of the source terms S. The inclusion of the source terms makes it difficult to find the
correct solutions to open channel flow over irregular geometry. The causes of the difficulties can
be summarized in the following two categories: complicated definition of the geometric source
terms and incompatibility with the numerical methods based on homogeneous equations. First,
the hydraulic pressure terms, I1 and I2, have complicated forms, especially the I2 term that
includes the integral of a derivative, which is very difficult to evaluate for non-rectangular channels.
Consequently, the most efficient way to calculate geometric source terms is to replace the I2 term by
other terms having simpler definition. Second, most numerical methods are developed on the basis
of homogeneous governing equations without source terms. As a result, the numerical techniques
cannot solve the inhomogeneous equations with source terms such as the shallow water equations
directly. This problem leads to a fractional step method that consists of two steps: calculation of the
homogeneous part with the numerical methods based on homogeneous governing equations and
subsequent addition of the source term effects. However, it is very difficult to achieve the balance
of numerical flux and source terms, especially when the source terms are treated by a pointwise
approach. This is because numerical balance is achieved when the following two conditions are
satisfied: first, the update of the source terms should be performed with the same data used for
the calculation of numerical flux and second, the discretization of the source terms should be
performed in the same way as for the flux term. The simplest way to avoid this difficulty is to
modify the source terms into the form of a flux, i.e. differential form, and combine it with flux
term F. This modification leads to the homogeneous form of the shallow water equations. In the
next section, the shallow water equations are modified to homogeneous form and a new definition
for source the flux term will be presented.

3. HOMOGENEOUS FORM OF THE SHALLOW WATER EQUATIONS

The shallow water equations (1) can be modified to the following homogeneous form

�U
�t

+ �H
�x

=0 with H=(F−R) (2)

where R=(0, R)T represents the flux vector related to the source terms, which can drive or impede
the flow of water. By modification to the homogeneous form, the source terms can be regarded as
a flux and solved by the same solution structure used for the flux vector F.
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The modified shallow water equations (3) can be numerically discretized conservatively by using
a finite volume method

Un+1
i =Un

i − �t

�x
(H∗

i+1/2−H∗
i−1/2) (3)

with H∗
i+1/2=F∗

i+1/2−R∗
i+1/2, where F∗ and R∗ are the intercell numerical flux corresponding

to flux terms F and R, respectively. The integrated numerical flux H∗ represents the net flow
of mass and momentum through the cell interface including the effect of the source terms. The
integrated numerical flux H∗ can be obtained by modifying the numerical flux functions developed
for homogeneous governing equations because the equation system (2) and (3) have similar form
to the homogeneous conservation law

�U
�t

+ �F
�x

=0

and its discretized form

Un+1
i =Un

i − �t

�x
(F∗

i+1/2−F∗
i−1/2) (4)

3.1. Definition of source flux vector R

While formulating the equations in homogenous form is relatively straightforward, establishing
the components of R correctly requires more careful consideration. In fact, it is the latter that is
the crucial aspect of the method proposed here. To obtain the correct expression of R, which is a
component of the source flux vector R, first of all, the channel geometry should be reconstructed
to be compatible with the homogeneous form equations. The transformation of the equations into
homogeneous form effectively removes the external forces on the control volume and instead
represents these through the flux term: this implies that there is no additional source of mass or
momentum inside a control volume (or, cell) and only the flux terms can contribute to the update
of the conserved variables, U. To satisfy this condition, a piecewise constant channel geometry as
shown in Figure 1 is considered. In the figure, all the factors of the channel geometry, i.e. bed
level, width, shape, etc., have constant values in a cell and the interface between two neighbouring
cells is considered as a discontinuity because any variation of the channel geometry in a cell causes
the addition of momentum, which is contradictory to the assumption of the homogeneous form
equations.

The flux term R can be defined based on the piecewise constant channel geometry by using
the following two steps: defining �R at cell interface and decomposing it properly into two nodal
forces. First, the definition of force �R can be obtained by comparing Equation (1) and (3):

�R
�x

=gA(So−S f )+gI2 (5)

To avoid complicated calculation of the I2 term, it should be modified by using the Leibnitz
theorem for differentiation of an integral [13]:

I2= �I1
�x

−A
�h
�x
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Figure 1. Reconstruction of geometry: (a) section view and (b) plan view.

Consequently, Equation (5) can be rewritten as

�R
�x

=g

(
�I1
�x

−A
�zs
�x

−AS f

)
(6)

where �zs/�x is the slope of free surface elevation zs = zb+h. �R at cell interface i+ 1
2 can be

obtained by integrating Equation (6):

∫ xi+1

xi

(
�R
�x

)
dx=

∫ xi+1

xi
g

(
�I1
�x

−A
�zs
�x

−AS f

)
dx

The integration is performed over the piecewise constant geometry between two nodes xi and
xi+1, and �Ri+1/2 can be approximated as

�Ri+1/2= Ri+1−Ri =g(�I1−�o−� f )i+1/2
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with

�oi+1/2=0.5(Ai +Ai+1)�zsi+1/2

� f i+1/2=0.5�x(Ai S f i +Ai+1S f i+1)

where g�o and g� f represent the momentum flux due to the water level difference and friction
force between two cell centres xi and xi+1, respectively. The above equations are based on the
assumption of a uniform mesh, but it is possible to extend the method to non-uniform meshes by
integrating Equation (6) over the relevant cells. This is not the main focus of this paper; hence, it
is not presented, but this does not lead to a loss of generality. Similarly, �Ri−1/2 at cell interface
between two cells i−1 and i can be expressed as

�Ri−1/2= Ri −Ri−1=g(�I1−�o−� f )i−1/2

The next step is to decompose �Ri+1/2 and �Ri−1/2 terms into the three ideal forces Ri−1, Ri
and Ri+1, which are essential to update the conserved variable Ui . The decomposition can be
performed by considering the numerical balance of F and R terms and the direction of �o and � f
terms:

Ri−1=gI1i−1−g(�o+� f )i−1/2

Ri =gI1i

Ri+1=gI1i+1+g(�o+� f )i+1/2

The g(�o+� f ) term representing the momentum flux due to the water level difference and friction
force is not included in Ri term because it should be considered as a pressure force exerted by the
neighbouring cells Ri+1 and Ri−1. As a result, the momentum flux R does not have an absolute
value but a relative value. For example, to update the variable Ui+1, the values of the three ideal
forces Ri , Ri+1 and Ri+2 are needed and these can be calculated by decomposing two terms
�Ri+1/2 and �Ri+3/2 and the value of the term Ri will be changed to Ri =gI1i +g(�o+� f )i+1/2.
Similarly, to update the variable Ui−1, the three terms Ui−2, Ui−1 and Ui are needed and the value
of the term Ri will be changed to Ri =gI1i −g(�o+� f )i−1/2.

4. CONSERVATIVE SCHEMES

In the previous section, a homogeneous form of the shallow water equations and the definition
of the source flux have been presented. This section is devoted to the solution of the homoge-
neous form equations and it can be performed through simple modification of the well-known
numerical schemes developed on the basis of the shallow water equations without source terms.
The modification can be performed by replacing the flux term F and the variable difference �U
with the integrated flux H and the modified difference �U′. �U′ represents the net difference of
the conserved variables �U including the effect of the channel geometry and can be obtained
from the relation between �H and �F. To verify the applicability of the proposed method to
various numerical schemes, approximate Riemann solver-based schemes (Roe and HLL) and TVD
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second-order schemes (Lax–Wendroff and MacCormack) are presented. In order to demonstrate
the modification process, the original numerical scheme is introduced first and, then, changed to
the homogeneous form.

4.1. Roe’s approximate Riemann solver

4.1.1. Original Roe’s scheme. Roe [2] constructed an approximate Jacobian J̃ which satisfies the
relation �F= J̃�U and is diagonalizable with real eigenvalues. The main idea of Roe’s method
is to split the flux difference at each cell interface by using the approximate Jacobian matrix and
which can be expressed as

�F= J̃�U= J̃+�U+ J̃−�U

where J̃± represents the positive or negative portion of the Jacobian matrix. J̃± can be obtained
by using the diagonal matrix of the eigenvalues

J̃± =RK±R−1

where R is the matrix of right eigenvectors and K± represents the matrix having only the positive
or negative eigenvalues on the diagonal. R and K± satisfy the following relations:

J̃= J̃++ J̃− =R(K++K−)R−1

By using these relations, the numerical flux at the cell interface i+ 1
2 between two cells i and i+1,

F∗
i+1/2, can be written as

F∗
i+1/2=Fi + J̃−

i+1/2(Ui+1−Ui ) (7)

F∗
i+1/2=Fi+1− J̃+

i+1/2(Ui+1−Ui ) (8)

or by averaging (7) and (8)

F∗
i+1/2= 1

2 (Fi+1+Fi )− 1
2 |J̃i+1/2|�Ui+1/2 (9)

By projecting onto the right eigenvectors, the variable differences �U can be rewritten as

�Ui+1/2=Ui+1−Ui =∑
k

(�̃k ẽk)i+1/2 (10)

and the numerical flux function (9) can be rewritten as the following characteristic form as:

F∗
i+1/2= 1

2
(Fi+1+Fi )− 1

2

∑
k

(�̃k |�̃k |ẽk)i+1/2

The approximate Jacobian matrix has eigenvalues and eigenvectors of the form

�̃1,2= ũ± c̃

ẽ1,2=(1, �̃1,2)
T
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where the average values ũ and c̃ can be obtained from the condition �F= J̃�U:

ũi+1/2 = Qi+1/
√
Ai+1+Qi/

√
Ai√

Ai+1+√
Ai

c̃2i+1/2 =

⎧⎪⎨
⎪⎩
g

Ii+1− Ii
Ai+1−Ai

if Ai+1−Ai �=0

c2i =c2i+1 if Ai+1−Ai =0

(11)

Note that Equation (11) can be used only for a prismatic channel case because, in case of a
non-prismatic channel, (Ii+1− Ii )/(Ai+1−Ai ) and c̃2i+1/2 can have negative value. Alternatively,
several expressions for c̃ are found in available literature and the one presented by Garcia-Navarro
and Vazquez-Cendon [6] is used in this paper:

c̃i+1/2=
√
g

2

(
Ai

Bi
+ Ai+1

Bi+1

)

The wavestrengths �̃1,2 can be computed from Equation (10):

�̃1= (c̃− ũ)�A+�Q

2c̃

�̃2= (c̃+ ũ)�A−�Q

2c̃

Roe’s solver, under certain circumstances, can lead to entropy violating solutions with spurious
oscillation near a transcritical point. To rectify this problem, the ‘entropy fix’ proposed by Harten
and Hyman [14] is used

|�̃|=
{|�̃| (|�̃|�ε)

ε (|�̃|<ε)

where ε is given by

ε=max(0, �̃i+1/2−�i ,�i+1− �̃i+1/2)

4.1.2. Homogeneous form of Roe’s scheme. The integrated intercell numerical flux H∗
i+1/2 can be

easily obtained by modifying F∗
i+1/2

H∗
i+1/2= 1

2 (Hi+1+Hi )− 1
2 |J̃|�U′

i+1/2

where the flux term F is replaced by H and |J̃|�U term related to the splitting of the flux
difference �F is replaced by |J̃|�U′ corresponding to the splitting of �H. The definition of the
term �U′ =(�A′,�Q′)T can be obtained by considering the relation

�Hi+1/2=�Fi+1/2−�Ri+1/2= J̃i+1/2�U′
i+1/2 (12)
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because the effect of the source flux R propagates along the eigenvalues �̃1,2 of Jacobian J̃. The
term �U′ represents the spatial difference of the conserved variables due to the source flux �R as
well as the momentum flux �F while �U is only related to �F. From Equation (12),⎛
⎜⎝

�Q

�

(
Q2

A

)
+g�I1

⎞
⎟⎠

i+1/2

−
(

0

g�I1−g(�o+� f )

)
i+1/2

=
(

0 1

−�̃1 · �̃2 �̃1+ �̃2

)
i+1/2

(
�A′

�Q′

)
i+1/2

and

�Q′
i+1/2=�Qi+1/2

�A′
i+1/2=−

�
(
Q2/A

)
i+1/2+g(�o+� f )i+1/2−(�̃1+ �̃2)�Qi+1/2

�̃1 · �̃2
Finally, the integrated flux H∗ can be expressed as the following characteristic form:

H∗
i+1/2= 1

2
(Hi+1+Hi )− 1

2

∑
k

(�̃′
k |�̃k |ẽk)i+1/2

where the modified wave strengths �̃′
1,2 are obtained from �U′ =∑k (�̃′

k ẽk) and given by

�̃′
1= (c̃− ũ)�A′+�Q

2c̃

�̃′
2= (c̃+ ũ)�A′−�Q

2c̃

The wavestrengths �̃′
1,2 represent the real state of the flow including the effect of the source terms.

For example, in the case of the still water problem, �A′ =0, �Q′ =0 and, consequently, �̃′
1,2=0,

which means that there is no flow through the cell interface.

4.2. HLL approximate Riemann solver

4.2.1. Original HLL scheme. The HLL solver was proposed by Harten et al. [1] and has been
widely used because it has a simple structure and does not need complicated characteristic decom-
position of the flux difference. The solution of the HLL solver consists of three constant states
separated by two characteristics �min and �max as shown in Figure 2. The numerical flux in the
intermediate region F(U∗) can be obtained by considering the following two Rankine–Hugoniot
conditions

F(U∗)−F(Ui )=�min(U∗−Ui )

F(Ui+1)−F(U∗)=�max(Ui+1−U∗)

and by eliminating the U∗ term

F(U∗)= �maxF(Ui )−�minF(Ui+1)

�max−�min
− �max�min(Ui+1−Ui )

�max−�min
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Figure 2. The solution structure of the HLL Riemann solver.

The intercell numerical flux F∗
i+1/2 has different values according to the sign of the wave speeds

and is given by

F∗
i+1/2=

⎧⎪⎨
⎪⎩
F(Ui ) if �min�0

F(Ui+1) if �max�0

F(U∗) otherwise

The two wave speeds �min and �max should be chosen carefully so as not to cause entropy
violation and, in this paper, those suggested by Einfeldt [15] which use Roe’s average values ũ
and c̃ are used

�min=min(ui −ci , ũi+1/2− c̃i+1/2)

�max=max(ui+1+ci+1, ũi+1/2+ c̃i+1/2)

where u and c represent velocity and wave speed, respectively.

4.2.2. Homogeneous form of HLL scheme. The integrated numerical flux H∗
i+1/2 can be easily

obtained by modifying the solution for the numerical flux F∗
i+1/2

H∗
i+1/2=

⎧⎪⎨
⎪⎩
Hi if �min�0

Hi+1 if �max�0

H∗ otherwise

with

H∗ = �maxHi −�minHi+1

�max−�min
− �min�max�U′

i+1/2

�max−�min

where �U′ =(�A′,�Q′)T can be defined by using a technique similar to that used for Roe’s solver.
In other words, �U′ satisfy the following relation:

�Hi+1/2=�Fi+1/2−�Ri+1/2=Jhlli+1/2�U
′
i+1/2 (13)
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In this case, the new Jacobian matrix Jhll is used instead of Roe’s approximate Jacobian J̃ because
the HLL solver has a different solution structure from Roe’s solver. The Jacobian matrix for HLL
solver, Jhll, is considered as having two eigenvalues �min and �max and can be expressed as

Jhlli+1/2=
(

0 1

−�min ·�max �min+�max

)
i+1/2

By solving Equation (13),

�Q′
i+1/2=�Qi+1/2

�A′
i+1/2=−

�
(
Q2/A

)
i+1/2+g(�o+� f )i+1/2−(�min+�max)�Qi+1/2

�min ·�max

4.3. TVD Lax–Wendroff scheme (TVD-LW)

4.3.1. Original TVD Lax–Wendroff scheme. The Lax–Wendroff scheme is second-order accurate
and was initially presented by Lax and Wendroff [16]. The scheme can be derived based on the
Taylor series expansion:

Un+1
i =Un

i +
(

�U
�t

)
�t+

(
�2U
�t2

)
(�t)2

2
+O(�t)3 (14)

In case of a conservation law without source terms

�U
�t

=−�F
�x

(15)

and

�2U
�t2

=− �
�t

�F
�x

= �
�x

(
−J

�U
�t

)
= �

�x

(
J
�F
�x

)
(16)

By substituting (15) and (16) into (14)

Un+1
i =Un

i −
(

�F
�x

)
�t+ �

�x

(
J
�F
�x

)
(�t)2

2
+O(�t)3

Finally, by using a central difference approximation for the spatial derivatives and neglecting
higher-order terms, the Lax–Wendroff scheme can be expressed as

Un+1
i =Un

i − 1

2

�t

�x
(Fi+1−Fi−1)+ 1

2

(
�t

�x

)2

(Ji+1/2[Fi+1−Fi ]−Ji−1/2[Fi −Fi−1])

This can be rewritten as a conservative form and given by

Un+1
i =Un

i − �t

�x
(F∗

i+1/2−F∗
i−1/2)
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with intercell numerical flux

F∗
i+1/2= 1

2
(Fi +Fi+1)− 1

2

�t

�x
(J�F)i+1/2 (17)

Equation (17) can be rewritten as

F∗
i+1/2= 1

2
(Fi +Fi+1)− 1

2
(|J|�U)i+1/2+ 1

2

(
|J|
[
1− �t

�x
|J|
]
�U

)
i+1/2

(18)

which can be considered as a first-order scheme with a second-order correction term. The main
defect of using Lax–Wendroff scheme is that it produces spurious oscillations near discontinuous
solutions. This problem can be solved by limiting the second-order correction term in Equation (18),
which causes numerical oscillations near discontinuities. By using the characteristic decomposition
technique used for Roe’s scheme, the numerical flux function for TVD Lax–Wendroff scheme can
be written as [7, 17]

F∗
i+1/2= 1

2
(Fi +Fi+1)− 1

2

∑
k

(�̃k |�̃k |ẽk)i+1/2+1

2

∑
k

(
�̃k�k |�̃k |

[
1− �t

�x
|�̃k |

]
ẽk

)
i+1/2

where �k =�(rk) is a nonlinear flux limiter function and the argument rk represents the behaviour
of the solution. The value of rk is calculated from the ratio of wave strength �̃k such as

rk = �̃upwindk

�̃localk

4.3.2. Homogeneous form of TVD Lax–Wendroff scheme. The homogeneous form of Lax–
Wendroff scheme can be constructed by replacing the flux term F with the integrated flux term
H. The modification is simpler than first-order schemes because it does not include the �U term.
The conservative form of Lax–Wendroff scheme can be rewritten as

Un+1
i =Un

i − �t

�x
(H∗

i+1/2−H∗
i−1/2)

with integrated intercell numerical flux

H∗
i+1/2= 1

2
(Hi +Hi+1)− 1

2

�t

�x
(J�H)i+1/2

Similarly, the TVD version of the Lax–Wendroff numerical flux can be expressed as

H∗
i+1/2= 1

2
(Hi +Hi+1)− 1

2

∑
k

(�̃′
k |�̃k |ẽk)i+1/2+1

2

∑
k

(
�̃′
k�k |�̃k |

[
1− �t

�x
|�̃k |

]
ẽk

)
i+1/2

where �̃′
k is the same modified wavestrength used for homogeneous form of Roe’s scheme in

Section 4.1. The flux limiter function �k =�(rk) should also be modified to deliver the effect of
the source terms into the TVD correction term and the argument rk is calculated by using the ratio
of modified wave strength �̃′

k like

rk = �̃′upwind
k

�̃′local
k
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It is important to use �̃′
k , instead of �̃k , to calculate the value of rk because �̃′

k represents the real
behaviour of the solutions including the effects of channel geometry and the using of �̃k does not
guarantee oscillation-free second-order solutions. A similar expression was mentioned by Burguete
and Garcia-Navarro [8].
4.4. TVD MacCormack scheme (TVD-MC)

4.4.1. Original TVD MacCormack scheme. An alternative way to achieve second-order accuracy
is using a two-step predictor–corrector technique. MacCormack [18] presented a second-order
two-step method that does not require the computation of the Jacobian matrix and its eigenvalues.
The scheme has been widely used [19–21] because of its efficiency and simple structure.

MacCormack scheme consists of two substeps: i.e. predictor and corrector steps, in which
one-sided differencing is used in alternate directions:

Predictor step:

Up
i =Un

i − �t

�x
(Fn

i+1−Fn
i )

Corrector step:

Uc
i =Up

i − �t

�x
(Fp

i −Fp
i−1)

Finally, the updated solution is given by

Un+1
i = 1

2 (U
n
i +Uc

i )

However, the problem with the MacCormack scheme is that it shows oscillatory behaviour near
discontinuities like other classical second-order schemes. To rectify this problem, the TVD-MC
scheme was presented by Garcia-Navarro et al. [22]. In the TVD version of MacCormack scheme,
the TVD correction term is added to the final update step to eliminate oscillations

Un+1
i = 1

2
(Un

i +Uc
i )+

�t

�x
(Dn

i+1/2−Dn
i−1/2)

where Dn is the TVD correction term. The form of the D term was obtained by using the similar
technique used for TVD-LW scheme and expressed as

Dn
i+1/2= 1

2

∑
k

(
�̃k |�̃k |

[
1− �t

�x
|�̃k |

]
[1−�k]ẽk

)
i+1/2

where the variables �̃k , �̃k and ẽk are calculated by using Roe’s method and �k is a flux limiter
function.

4.4.2. Homogeneous form of TVD-MC scheme. The homogeneous form of the MacCormack
scheme can be easily obtained by replacing the flux term F with the integrated flux term H in
each step:

Predictor step:

Up
i =Un

i − �t

�x
(Hn

i+1−Hn
i )
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Corrector step:

Uc
i =Up

i − �t

�x
(Hp

i −Hp
i−1)

Then, the updated solution is given by

Un+1
i = 1

2 (U
n
i +Uc

i )

By using the integrated flux term H, the contribution of the source terms is automatically evaluated
in a different direction at each step and no special treatment is needed. In the case of the TVD-MC
scheme, the TVD correction term should be modified to calculate the effect of the source terms
correctly. This can be done by using the same expressions of �̃′ and �k used for TVD-LW scheme
and the TVD correction term is expressed as

Dn
i+1/2= 1

2

∑
k

(
�̃′
k |�̃k |

[
1− �t

�x
|�̃k |

]
[1−�k]ẽk

)
i+1/2

5. NUMERICAL TESTS AND RESULTS

In this section, the proposed homogeneous form of conservative numerical schemes is applied
to several benchmark tests that are taken from the available literature. All the test problems are
simulated with a rectangular or trapezoidal channel as shown in Figure 3. The side slope of the
trapezoidal channel is defined as 1 :m and, in case of rectangular channel, m is set to zero. To
ensure numerical stability CFL=0.9 is used and the minmod flux limiter function that is given by
�(r)=max[0,min(1,r)] is used for TVD schemes. The convergence criterion for steady problems
is defined as R<1×10−6, where R is the relative error defined by

R=
√√√√∑

i

(
hni −hn−1

i

hni

)2

The boundary conditions are described by using a ghost-cell approach in which the conditions
are implemented by creating dummy cells at the end of the reach. For example, the values for the
summy cells to describe transmissive downstream boundary are defined as

AN+1= AN , QN+1=QN

Figure 3. Cross section used for test problems.
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Figure 4. Bed elevation and width variation for Problems 1 and 2.

and

AN+2= AN−1, QN+2=QN−1

Problem 1 (Quiescent flow)
This problem is chosen to illustrate the benefit of the homogeneous form of the equations, which
can achieve perfect balance of two flux terms F and R. Many numerical schemes fail to maintain
quiescent flow without special treatment of the source terms. This problem was presented by Goutal
and Maurel [23] and consists of stationary flow with uniform water surface level zs =12m and a
channel with variable bed slope and width. The channel geometry for this problem is depicted in
Figure 4. The length of the channel is 1500m and 600 uniform cells (�x=2.5m) are used.

Numerical solutions are presented in Figure 5. To show the benefit of using homogeneous
form schemes, the numerical results at t=10000s are compared with the solutions calculated
by the original schemes with pointwise source term treatment as well as the exact solutions. As
shown in the figure, all the proposed schemes reproduce quiescent flow correctly without any
numerical errors, while the pointwise method fails to maintain a stationary state. In this case, the
integrated numerical flux H∗ is zero at each cell interface because the modified variable differences
�A′ =�Q′ =0 throughout the whole domain. This shows that there is no transfer of mass and
momentum through each cell interface and, consequently, the homogeneous form of numerical
schemes can ensure a stationary state.

Problem 2 (Tidal wave flow over an irregular bed)
To verify the ability to solve flow over an irregular bed, the proposed schemes are applied to a
test case initially presented by Goutal and Maurel [23]. The same geometry (bed level and base
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Figure 5. Water surface and discharge profiles in Problem 1: (a), (b) Roe; (c), (d) HLL;
(e), (f) TVD-LW; and (g), (h) TVD-MC.

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2010; 63:313–340
DOI: 10.1002/fld



SHALLOW WATER EQUATIONS WITH SOURCE TERMS 329

width) as in Problem 1 is used. The initial conditions are the same as the previous problem

Q(x,0)=0m3/s

h(x,0)+zb=12m

and the boundary conditions are

h(0, t)=h(0,0)+�(t)

Q(L , t)=0m3/s

where �(t) is the time-dependent tidal flow entering the boundary x=0 and given by

�(t)=4+4sin

(
�

(
4t

86400
+ 1

2

))

which represents a slow wave with long period T =43200s. The friction term is included by setting
Manning’s roughness coefficient n=0.1. The analytical solutions were presented by Bermudez
and Vazquez [5] and are obtained by the first-order approximation of the mass conservation
equation:

h(x, t)=h(x,0)+�(t)

Q(x, t)=�′(t)
∫ L

x
(B(s)+2mh)ds

The numerical simulations were performed with both a rectangular (m=0) and a trapezoidal
channel (m=1) using 200 uniform cells with �x=7.5m. It should be noted that the analytical
solutions are only asymptotically exact as the speed of flow tends to zero.

Numerical solutions are shown in Figures 6 and 7. The velocity profiles at t=10800s corres-
ponding to a half-risen tide with maximum positive velocity are compared with exact solutions.
As shown in the figures, all the proposed schemes calculate the effect of the extreme irregularity
of the channel geometry correctly and show good agreement with the analytical solutions for
both rectangular and trapezoidal channels. Especially, the TVD second-order schemes do not
show numerical errors due to the imbalance of high-order numerical flux and source terms. This
is because the high-order correction terms using the modified wave strength �̃′ can deliver the
effect of geometry and friction force to the high-order term and also because the numerical
schemes automatically calculate the high-order source flux that is well balanced with the flux
term F.

Problem 3 (Steady flow over an irregular bed with friction)
MacDonald [24] presented an analytical solutions for steady open channel flow problems including
a friction force term by calculating the bed slope So corresponding to a hypothetical water depth
ĥ. In [24], the bed slope function So(x) was obtained from the steady flow equation and given by

So(x)=
(
1− Q2T

gA3

)
ĥ′(x)+ Q2n2P4/3

A10/3
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Figure 6. Velocity profiles in Problem 2 with a rectangular channel: (a) Roe; (b) HLL;
(c) TVD-LW; and (d) TVD-MC.

Figure 7. Velocity profiles in Problem 2 with a trapezoidal channel: (a) Roe; (b) HLL;
(c) TVD-LW; and (d) TVD-MC.
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Figure 8. Water surface and bed elevation for Problem 3–1 and Problem 3–2.

where T = B+2mĥ(x) is the top width of the wetted cross section, P= B+2ĥ(x)
√
1+m2 is

the wetted perimeter and Q represents constant discharge. A set of test cases that consist of
steady flows over rectangular or trapezoidal rough channel were presented in [24] and, among
them, two problems with prismatic channels were chosen to verify the ability of the proposed
numerical schemes. In Problems 3–1, a subcritical and smooth water depth profile is used in
a rectangular channel, while a transcritical flow consisting of four hydraulic jumps is simu-
lated in Problems 3–2. The bed and free surface profiles for both problems are depicted in
Figure 8.

The numerical solutions are presented in Figures 9 and 10. The numerical water depth and
discharge profiles are compared with the hypothetical depth ĥ and steady discharge Q. As shown
in Figure 9, all the proposed schemes produce very accurate solutions to this subcritical flow
problem. The numerical solutions to Problems 3–2 are presented in Figure 10. This problem is a
very severe test case including multiple hydraulic jumps and transcritical points. All the proposed
schemes predicted the position and magnitude of the hydraulic jumps, except small discrepancies
at the discharge profiles at the shock positions(which is a common numerical behaviour for most
conservative schemes). The convergence histories for both cases are shown in Figure 11 and it
shows that the TVD-MC scheme that is two-step predictor–corrector method converges to steady
state faster than the other schemes. Generally, the two-step approach shows faster convergence
than normal methods, while the former has a more complicated structure. It is clear that there is
a tradeoff between accuracy and complexity.

Problem 4 (Steady flow over a hump in a non-prismatic channel)
A steady flow in a 3m-long rectangular non-prismatic channel with a hump is simulated with
the proposed schemes. This test case was presented by Hubbard and Garcia-Navarro [7] and the

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2010; 63:313–340
DOI: 10.1002/fld



332 S.-H. LEE AND N. G. WRIGHT

Figure 9. Water depth and discharge profiles in Problem 3–1: (a), (b) Roe; (c), (d) HLL; (e),
(f) TVD-LW; and (g), (h) TVD-MC.

channel geometry is given by

zb(x)=
{
0.1cos2(�(x−1.5)), 1.0�x�2.0

0.0 otherwise

b(x)=
{
1.0−0.1cos2(�(x−1.5)), 1.0�x�2.0

1.0 otherwise
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Figure 10. Water depth and discharge profiles in Problem 3–2: (a), (b) Roe; (c), (d) HLL;
(e), (f) TVD-LW; and (g), (h) TVD-MC.

and shown in Figure 12. A uniform 150 cell grid with �x=0.02m is used for the two flows, each
defined by a local Froude No. Fr : subcritical (Fr =0.5) flow and transcritical (Fr =0.6) flow.
The downstream boundary condition is hdn=1m.

Numerical solutions are presented in Figures 13 and 14. Similar to the results of previous
problems, all the proposed schemes predicted the water depth and discharge profiles correctly in
the subcritical flow case. In case of transcritical flow problem, the proposed schemes reproduce
the position and strength of the hydraulic jump very correctly. The convergence histories for
this problems are shown in Figure 15. Similar to Problems 3–1 and 3–2, the TVD-MC scheme
converges to steady state faster than other schemes.
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Figure 11. Convergence histories in: (a) Problem 3–1 and (b) Problem 3–2.

Figure 12. Bed elevation and width variation for Problem 4.

Problem 5 (Wave propagation)
The test problem presented by LeVeque [4] is chosen to demonstrate the ability of the proposed
schemes to solve wave propagation problems over variable geometry. A 1m-long rectangular
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Figure 13. Water depth and discharge profiles in Problem 4 (subcritical case): (a), (b) Roe; (c), (d) HLL;
(e), (f) TVD-LW; and (g), (h) TVD-MC.

channel with variable bed elevation, which is given by

zb(x)=
{
0.25cos(�(x−0.5)/0.1+1.0), 0.4�x�0.6

0.0 otherwise
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Figure 14. Water depth and discharge profiles in Problem 4 (transcritical case): (a), (b) Roe; (c), (d) HLL;
(e), (f) TVD-LW; and (g), (h) TVD-MC.

is used and the initial condition is stationary flow (Q=0) with the following water surface profile:

zs(x)=
{
1.0+ε, 0.1�x�0.2

1.0 otherwise

where ε is a small perturbation. According to [4], the reduced gravitational acceleration g=1m2/s
and perturbation depth ε=0.01 are used. The initial perturbation of water depth causes two waves,
right- and left-going, which propagates at the speed ±√

gh, respectively. The right-going wave
propagates over the hump located at the middle area of the channel, whereas the left-going wave
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Figure 15. Convergence histories in Problem 4: (a) subcritical and (b) transcritical case.

leaves the domain through the boundary x=0. The numerical results are obtained at t=0.7s on
a uniform grid with 500 cells.

The numerical solutions are presented in Figure 16. Owing to the absence of analytical solutions,
the computed solutions are compared with the reference solution obtained with TVD-LW scheme on
a finer grid (2500 cell). As shown in the figure, the proposed schemes reproduce wave propagation
of very small pertubation without any noticeable distortions or oscillations and the two TVD
second-order schemes show more accurate solutions than the two first-order schemes.

In this case, a series of runs has been carried out to indicate the accuracy of the presented
schemes. The l2 errors are plotted against the corresponding cell numbers and shown in Figure 17.
According to the numerical results, the second-order accurate schemes produce more accurate
solutions and show higher sensitivity to the variation of the grid size.

6. CONCLUSIONS AND FUTURE POSSIBILITIES

A simple and accurate method to solve open channel flow over irregular geometry has been
presented. The modification of the shallow water equations to the homogeneous form enables one
to use numerical methods developed for homogeneous conservations laws and avoid a cumbersome
fractional step method for source term treatment. An integrated numerical flux, which includes
the representation of the source terms, has been obtained by straightforward modification of the
governing equations. The well-known conservative numerical schemes have then been amended
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Figure 16. Water surface profiles in Problem 5: (a) Roe; (b) HLL; (c) TVD-LW; and (d) TVD-MC.

Figure 17. Graph of l2 error against number of cells (N ) in Problem 5.

to solve these newly proposed equations. The numerical results show that the proposed schemes
are highly conservative and accurate while having simple forms. The proposed schemes produce
excellent agreement with the analytical solutions.
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The proposed method has several advantages. First, it can solve steady flows over highly non-
prismatic channels without numerical errors, thus demonstrating that the proposed schemes achieve
perfect numerical balance of the two flux terms F and R. Second, it can compute the numerical
flux corresponding to the real state of water flow and give straightforward results. For example, in
the still water simulation problem, the integrated numerical flux H∗ is equal to zero at every cell
interface, which represents no transfer of mass and momentum. Third, high-order accuracy can be
obtained easily and no special treatment is needed to maintain a numerical balance, because it is
performed automatically in the integrated numerical flux function. Finally, the proposed approach
has strong applicability to various conservative numerical schemes as shown in the numerical
results.

The authors believe that it is straightforward to extend this methodology to real river flow
and the two-dimensional equations. Preliminary results suggest that it may well assist with the
wetting/drying boundary problem. Implementations and demonstrations of these will be published
elsewhere.
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